FAIRCHILD

SEMICONDUCTOR

FSLV16211 24-Bit Bus Switch

General Description

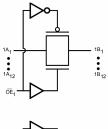
The FSLV16211 is a 24-bit, high speed, low voltage bus switch. The low On Resistance of the switch allows inputs to be connected to outputs without adding propagation delay or generating additional ground bounce noise.

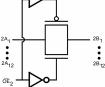
This device's design allow this part to be used as a 12-bit or 24-bit bus switch. When \overline{OE}_1 is LOW, Port 1A is connected to Port 1B. When \overline{OE}_2 is LOW, Port 2A is connected to Port 2B.

Features

- 5Ω switch connection between two ports
- Minimal propagation delay through the switch
- Low I_{CC}
- Zero bounce in flow-through mode
- Also packaged in plastic Fine-Pitch Ball Grid Array (FBGA)

February 2001


Revised October 2001


Ordering Code:

Order Number	Package Number	Package Description			
FSLV16211GX (Note 1)	BGA54A	54-Ball Fine-Pitch Ball Grid Array (FBGA), JEDEC MO-205, 5.5mm Wide (TAPE and REEL)			
FSLV16211MTD MTD56 56-Lead Thin Shrink Small Outline Package (TSSOP), JEDEC MO-153, 6.1mm Wide					
Devices also available	in Tane and Reel Specify I	by appending the suffix letter "X" to the ordering code			

Note 1: BGA package available in Tape and Reel only.

Logic Diagram

© 2001 Fairchild Semiconductor Corporation DS500451

FSLV16211

$56 - \overline{OE}_1$ $55 - \overline{OE}_2$ $54 - 1B_1$ $53 - 1B_2$ $52 - 1B_3$ $51 - 1B_2$ NC-1A₁ – 2 1A2 -3 1A3 -4 1A4 -5 51 - 1B₄ 50 - 1B₅ 49 - GND 1A₅ — 6 1A₆ 7 GND -8 48 — 1B₆ 47 — 1B₇ 1A7 -9 10 1A₈ - $\begin{array}{c} 47 & -187 \\ 46 & -188 \\ 45 & -189 \\ 44 & -18_{10} \\ 43 & -18_{11} \\ 42 & -18_{12} \\ 41 & -18_{12} \end{array}$ 1A₉-11 1A₁₀-12 1A₁₁ — 13 1A₁₂- 14 2A1-15 41 - 2B1 2A2-16 $40 - 2B_2$ 39 - 2B_3 V_{cc}_ 17 2A3-18 38 - GND GND- 19 $37 - 2B_4$ $36 - 2B_5$ $35 - 2B_6$ $34 - 2B_7$ $33 - 2B_8$ 2A4 - 20 2A5-21 22 2A₆-2A7-23 2A₈-24 $32 - 2B_9$ 31 - 2B_10 30 - 2B_{11} 2A9-25 2A₁₀-26 27 2A₁₁-29 - 2B₁₂ 28 2A₁₂-

Pin Assignment for TSSOP

Connection Diagrams

Pin Assignment for FBGA

	1	2	3	4	5	6
A	0	0	0	0	0	0
в	0	0	Ο	0	0	0
С	Ó	Ò	Ò	Ó	Ò	Ò
Δ	0	0	0	0	0	0
ш	0	0	0	0	0	0
ш	0	0	Ο	0	0	0
Q	0	0	0	0	0	0
н	0	Ο	0	0	0	0
ſ	0	0	0	0	0	0

(Top Thru View)

Pin Descriptions

Pin Name	Description
$\overline{OE}_1, \overline{OE}_2$	Bus Switch Enables
1A, 2A	Bus A
1B, 2B	Bus B
NC	No Connect

FBGA Pin Assignments

	1	2	3	4	5	6
Α	1A ₂	1A ₁	NC	OE ₂	1B ₁	1B ₂
В	1A ₄	1A ₃	1A ₇	OE ₁	1B ₃	1B ₄
С	1A ₆	1A ₅	GND	1B ₇	1B ₅	1B ₆
D	1A ₁₀	1A ₉	1A ₈	1B ₈	1B ₉	1B ₁₀
Е	1A ₁₂	1A ₁₁	2A ₁	2B ₁	1B ₁₁	1B ₁₂
F	2A ₄	2A ₃	2A ₂	2B ₂	2B ₃	2B ₄
G	2A ₆	2A ₅	V _{CC}	GND	2B ₅	2B ₆
Н	2A ₈	2A ₇	2A ₉	2B ₉	2B ₇	2B ₈
J	2A ₁₂	2A ₁₁	2A ₁₀	2B ₁₀	2B ₁₁	2B ₁₂

Truth Table

Inp	uts	Inputs/Outputs		
OE ₁ OE ₂		1A, 1B	2A, 2B	
L	L	1A = 1B	2A = 2B	
L	н	1A = 1B	Z	
н	L	Z	2A = 2B	
Н	Н	Z	Z	

Absolute Maximum Ratings(Note 2)

Supply Voltage (V _{CC})	-0.5V to +4.6V
DC Switch Voltage (V _S)	-0.5V to +4.6V
DC Input Voltage (VIN) (Note 3)	-0.5V to +4.6V
DC Input Diode Current (I_{IK}) $V_{IN} < 0V$	–50 mA
DC Output (I _{OUT}) Sink Current	128 mA
DC V _{CC} /GND Current (I _{CC} /I _{GND})	+/- 100 mA
Storage Temperature Range (T _{STG})	–65°C to +150 °C

Recommended Operating Conditions (Note 4)

Power Supply Operating ($V_{CC)}$	2.3V to 3.6V
Input Voltage (V _{IN})	0V to 3.6V
Output Voltage (V _{OUT})	0V to 3.6V
Input Rise and Fall Time (t_r, t_f)	
Switch Control Input	0 ns/V to 4 ns/V
Switch I/O	0 ns/V to DC
Free Air Operating Temperature (T _A)	-40 °C to +85 °C

FSLV16211

Note 2: The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the Electrical Characteristics tables are not guaranteed at the absolute maximum rating. The "Recommended Operating Conditions" table will define the conditions for actual device operation.

Note 3: The input and output negative voltage ratings may be exceeded if the input and output diode current ratings are observed.

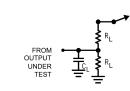
Note 4: Unused control inputs must be held HIGH or LOW. They may not float.

DC Electrical Characteristics (Note: Not all conditions may appear on all switch types)

Symbol	Parameter	V _{CC}	T A =	= −40 °C to +	85 °C	Units	Conditions
Symbol		(V)	Min	Тур	Max	Units	Conditions
V _{IK}	Clamp Diode Voltage	3.0			-1.2	V	I _{IN} = -18 mA
V _{IH}	HIGH Level Control Input Voltage	2.3-2.7	1.7			v	
		2.7-3.6	2.0			v	
V _{IL}	LOW Level Control Input Voltage	2.3-2.7			0.7	V	
		2.7-3.6			0.8	v	
I _I	Input Leakage Current	2.3			10		Force $V_I = 3.6V$, $I_{OUT} = 0.0A$
		0.0			10	μA	Force V _I = 3.6V
		3.6			1		$0 \le V_{IN} \le 3.6V$
I _{CC}	Quiescent Supply Current	3.6			3	μΑ	$V_{IN} = V_{CC}$ or GND, $I_{OUT} = 0A$
ΔI_{CC}	Increase in I _{CC} per Input	3.6			300	μΑ	One Input @ 3V,
							Other Inputs at V_{CC} or GND
I _{OZ}	OFF-STATE Leakage	3.6			±1	μΑ	$0.0 \le A, B \le 3.6V$
R _{ON}	Switch On Resistance	3.0		5	7		$I_{IN} = 64 \text{ mA}, V_I = 0.0 \text{V}$
		3.0		5	7		$I_{IN} = 30 \text{ mA}, V_I = 0.0 \text{V}$
		3.0		10	15		$I_{IN} = 15 \text{ mA}, V_I = 2.4 \text{V}$
		3.0			20	Ω	$I_{IN} = 15 \text{ mA}, V_I = 3.0 \text{V}$
		2.3		5	8	52	$I_{IN} = 64 \text{ mA}, V_I = 0.0 \text{V}$
		2.3		5	8		$I_{IN} = 30 \text{ mA}, V_I = 0.0 \text{V}$
		2.3		10	15		$I_{IN} = 15 \text{ mA}, V_I = 1.7 \text{V}$
		2.3			20		I _{IN} = 15 mA, V _I = 2.0V

FSLV16211

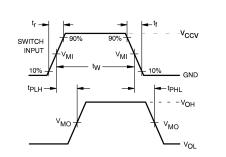
AC Electrical Characteristics

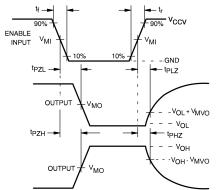

,							
			T _A = -40 °C	C to +85 °C,	T _A = -40 °C		
ĺ	Symbol	Parameter	$C_L = 30 pF,$	$R_L = 500\Omega$	C _L = 50pF,	$R_L = 500\Omega$	Units
	Cymbol	, and the contract of	V _{CC} = 2.5	$V \pm 0.20V$	V _{CC} = 3.3	$V \pm 0.30V$	onito
			Min	Max	Min	Max	
	t _{PHL} , t _{PLH}	Propagation Delay (Note 5)		0.15		0.25	ns
	t _{PHZ} , t _{PLZ}	Enable Time	0.5	4.7	1.0	7.0	ns
	t _{PZH} , t _{PZL}	Disable Time	0.5	5.1	1.0	5.5	ns

Note 5: This parameter is guaranteed by design but is not tested. The bus switch contributes no propagation delay other than the RC delay of the typical On Resistance of the switch and the load capacitance, when driven by an ideal voltage source (zero output impedance).

Capacitance (Note 6)

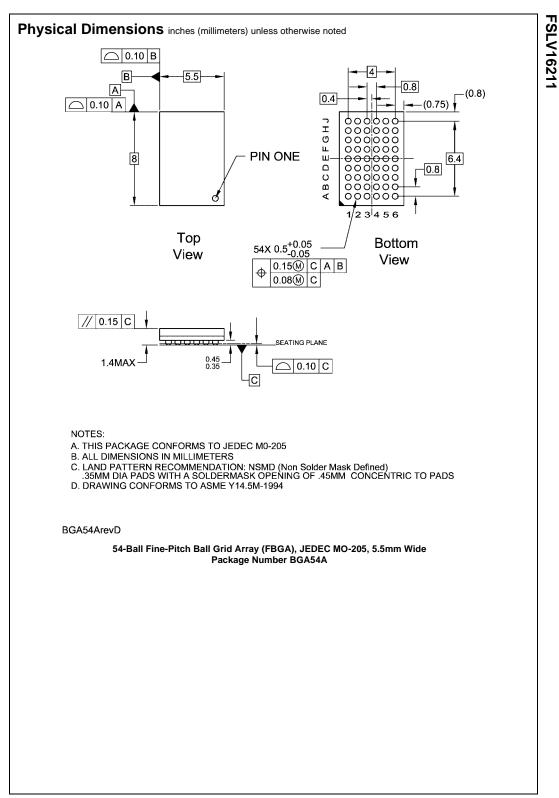
Symbol	Parameter	Тур	Max	Units	Conditions		
CIN	Control Pin Input Capacitance	4.5		pF	$V_{CC} = 3.3V$		
C _{I/O}	CI/O Input/Output Capacitance 6.5 pF V _{CC} , OE = 3.3V						
Note 6: T _A =	Note 6: $T_A = +25^{\circ}C$, f = 1 MHz, Capacitance is characterized but not tested.						


AC Loading and Waveforms


Test	Switch
t _{PD}	Open
t _{PLZ} /t _{PZL}	V _{IN}
t _{PHZ} /t _{PZH}	GND

Note: C_L includes load and stray capacitance Note: Input PRR = 1.0 MHz, t_W = 500 ns

FIGURE 1. AC Test Circuit



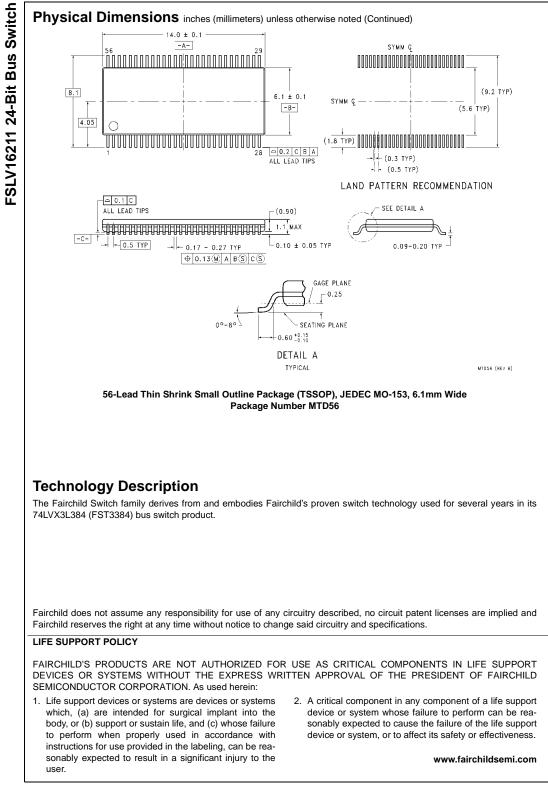

• V_{IN} • OPEN • GND

FIGURE 2. AC Waveforms

	V _{cc}	
Symbol	$\textbf{3.3V} \pm \textbf{0.3V}$	$\textbf{2.5V} \pm \textbf{0.2V}$
V _{MI}	1.5V	V _{CC} /2
V _{MO}	1.5V	V _{CC} /2
V _{MVO}	0.3V	0.15V
V _{IN}	6.0V	2 x V _{CC}
V _{CCV}	3.0	V _{CC}
t _r /t _f	2 ns	2.5 ns

